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Answer Three Questions



1.

(i) Given that the set of all 3 x 3 orthogonal real matrices with determinant 41 forms a
group SO(3) under matrix multiplication, prove that SO(3) has a subgroup R consisting
of rotations about the z-axis. Write down without proof the definitions of two other
subgroups, Rx, Ry, of SO(3), corresponding to rotations about the z-axis and y-axis
respectively.

(ii) Prove that the map
g:10,27] x [=m/2,7/2] — E*: (u,v) — (coswv cos u, cos v sin u, sin v)
provides a parametrization of the standard unit sphere S%.

(iii) Prove that R, defines an action on the standard unit sphere S? by the map
k=3
pi Rz xS — S ([Ay), i) = [ Aiwpil
k=1

and find its orbits. Prove also that this action is effective but neither free nor transitive.

(iV) Find a parametric equation for the equator curve on S? in the form
e:[0,27] — S
and find the parameter value t, € [0, 27| such that

1 1 0)
T =y = =P, Say.
NN p, say
Find a parametric equation for the great circle v through p and inclined at angle 7/6 to

the equator, so that y(¢;) = p for some ¢; in the domain of v and /() makes an angle
7/6 with €'(ty) at p. What is the torsion of 77

e(to) = (



2.

Let a : (a,b) — E? be a regular curve with positive curvature r, torsion 7 and a Frenet-
Serret frame field (T, N, B).

Denote by s : (a,b) — R the arc length function and suppose that & : (¢,d) — E? is a
unit speed reparametrization of a.

Denote by & and 7 the curvature and torsion respectively of &, and by (T,N ,B) the
Frenet-Serret frame field of &.

(i) Write down without proof the Frenet-Serret equations for & and use the definitions

w(t) = #(s(0)
) = #(s(0))
() = T(s(0)
N(t) = N(s(t)
B(t) = B(s(t))

to obtain the Frenet-Serret equations for a.

(ii) Prove that « has acceleration
a" — S”T + (8,)2/€N

with curvature
[l” x o]

K =
[le/]f?

and torsion , voom
o xad o

T = Ha/ % O//HQ '

(iii) Find the curvature and torsion of the twisted cubic curve

a:(0,1) =Bt (£, 12, 17).



3.
Let ® : M, — M, be a local isometry between two regular surfaces M; and M, in E? with
Gaussian curvatures K, Ko, respectively. A famous theorem of Gauss states that then

Klngoq).

Prove by counterexample that the converse is false by considering the funnel surface M;
with patch map
(u,v) — (vcosu,vsinu,logv)

the helicoid M, with patch map
(u,v) — (vcosu,vsinu,u)
and the diffeomorphism

O My — M, : (veosu,vsinu,logv) — (vcosu,vsinu, u).

Do this by showing that this M; and M, have the same curvature at corresponding points
under @, but ® is not an isometry. You may use without proof the Weingarten result
that the determinant of the shape operator S is given by

_ eg— f?
detS——EG_F2

when the arc length formula is

ds® = Edu® + 2Fdudv + Gdv?

and, for a unit normal field n and a patch map x, the second fundamental form has
components given by
€=M+ Tyy, [=N"Tyy, §=17N" Ty



4.

(i) Draw a projection of an oriented trefoil knot 7', and number the overcrossings. From
your drawing, write down without proof a matrix from which the Alexander polynomial
A(T) may be found as the monic factor of a determinant. Find A(T).

(ii) Take an identical pair of oriented trefoil knots and by joining them together form
an oriented sum knot, R; take two more oriented trefoil knots, one the mirror image of
the other, and join them to form a different summand oriented knot, G; do this in such
a way that R and G each have a projection with six overcrossings. [In fact, one of your
summands should be the square knot and the other should be the granny knot.] Find
suitable such projections, number the overcrossings and then compute for R, G without
proof the Alexander polynomials A(R) and A(G).

(iii) Write down an equation relating the three polynomials, A(T), A(R) and A(G).



